An Ensemble Approach to Predict Default Risk in Stress Testing


Yun Zheng
VP of Innovation & Global Risk
Analytics
HSBC

Overview

This presentation discussed the importance of performing stress tests on financial models that are used to predict the term structure of corporate default probabilities. This is accomplished by using an ensemble approach using different machine learning algorithms that minimize typical shortcomings and maximize output accuracy.

Watch Yun Zheng’s full presentation here!

A stress test is software testing that is performed to verify the stability and reliability of a system. This mainly focuses on determining the systems’ robustness and error handling capability under circumstances that are historically atypical and under extremely heavy load conditions. The CCAR (comprehensive capital analysis and review) is an annual exercise by the Federal Reserve that looks to ensure that institutions have well-defined and forward-looking capital planning processes.

This exercise looks to account for unique risks and ensure that sufficient capital is present in order to continue operations through times of economic and financial stress. This regular scrutiny can put pressure on companies within the financial industry. Fortunately, with recent advances in machine learning, stress tests can be applied with relatively simple models to aid in determining future outcomes that extend beyond historical occurrences.

“It is difficult to predict, especially the future. It is difficult to forecast, especially the future.”

Yun describes the Dodd-Frank Act as a forward-looking stress test on a quantitative basis. This operates within three scenarios: baseline (normal), adverse (bad), and severely adverse (worst). These are used to describe different fluctuations in the market and how they will impact companies. Different stress tests encompass a variety of different financial pressures. What happens if the unemployment rate rises to r% in a specific quarter? What happens if GDP falls by x% in a given quarter? What happens if interest rates go up by y in the second year?

Including changes in variables is a standard task that machine learning algorithms are used for to explain different prediction outcomes. However, this problem becomes more complicated when you attempt to explain scenarios that have never occurred before and therefore do not give any historical trends that can be used for future predictions (examples of how changing different variables can drastically alter predictions when there is little or no historical examples to work off of).

Standard challenges such as variable dependency, scenario dependency, and methodology dependency all exist within this modeling framework. Feature engineering and selection helps determine data relevance and variable stability. Models goals are to capture dramatic shifts in severely adverse scenarios. This scenario dependence uses predictions based off of both back testing and peak forecasting to mitigate this issue. The methodology dependency is solved by using an ensemble method, a combination of GLM and GBM modeling.

GLM (generalized linear modeling) and GBM (gradient boosting machine) are combined to capture both global and local trends. This helps aid in gauging appropriate responses to stressors even when they are out of historical range. The combination of the two can predict the probability of default at a segmentation level that provides the flexibility required for atypical results.

This represents a two-step sequential modelling process. The first step is to model the main effect drivers, including segmentation variables and macro drivers. This helps ensure the significance of the main effect. The second step is to model the interaction between variables by offsetting the estimation from the first modelling step to capture the sensitivity at a segmentation level. Gradient boosting was chosen as this second step by training models sequentially to reduce the amount of modelling bias. This helped reveal the relationships between the predictor variables and target while showing the marginal effect of the features on the prediction.

Yun and team understand that continually improving this process is the only sure fire way to ensure the highest degree of accuracy from these models. Extrapolation of unseen scenarios is complicated to accurately predict. Stress testing using different machine learning algorithms is a great tool to utilize to help with the standard issues faced when dealing with these regulatory exercises that companies are required to participate in.


Tags   •   Finance

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *

blog

Good site you've got here.. It's hard to find good
quality writing like yours these days. I really appreciate individuals like you!
Take care!!

Related Posts

Recent Posts

How Frauds are Combated by AI and Machine Learning in Times of COVID-19 - Introduction With the world battling COVID-19, a significant increase in fraud has been observed worldwide. As more and more people…
AI vs Bots – The Evolution of Technology - Tokologo "The Commodore" Phetla Managing DirectorChristopher Africa Technology has evolved more rapidly in the past two decades, than it has…
How Machine Intelligence is Saving Lives - Artificial intelligence is improving healthcare and changing the lives of patients. In 2019, the AI in the global healthcare market…
The Changing Roles within Cybersecurity Due to AI - During this panel, industry experts (showed above) discussed the changing roles within the cybersecurity industry due to AI. We’ve included…
How COVID-19 Is Impacting Cybersecurity - During this panel, industry experts (showed above) discussed how COVID-19 is affecting cybersecurity. We’ve included a short transcription of the…
Artificial Intelligence for Secure Payments - David SmithConsultantSmart Card Institute In recent years, the world has seen a transformation of all industries to a digital world.…
Leveraging AI in the Travel Industry at Airports - https://youtu.be/T7OpY6P0cE8 Bespoke is the developer of “Bebot”, the first AI-powered chatbot developed specifically for travel and emergency response. Bebot assists…
“Ask Me Anything” with Reid Blackman, PhD & AI Ethics Consultant - Reid Blackman, PhDAI Ethics Consultant & CEOVirtue Ai4 recently hosted an “Ask Me Anything” session with Reid Blackman, PhD on…
How Hackers are Using AI - During this panel, industry experts (showed above) discussed how hackers are using AI and the changes that they've noticed. We’ve…
AI in the Context of Cyber Adversaries - During this panel, industry experts (showed above) discussed AI in the Context of Cyber Adversaries. We’ve included a short transcription…

Popular Posts

Does Healthcare AI Meet Basic Ethics Principles? - Ingrid Vasiliu-Feltes Chief Quality and Innovation Officer MEDNAX, Health Solutions Partner Over the past decade we have noticed an exponential…
Artificial Intelligence & Cybersecurity: Math Not Magic - Wayne Chung CTO FBI Introduction The field of cybersecurity has slowly progressed from an art to a science. It has…
AI/ML in Investment and Risk Management: Recent Applications, Use Cases, and Implementation Challenges - Arvind Rajan Managing Director - Head of Global & Macro PGIM Fixed Income Introduction Investing is a completely different ballgame…
Machine Learning and Artificial Intelligence in Banking - Artit "Art" Wangperawong Distinguished Engineer US Bank Introduction Every company’s AI journey is different. We’re all trying to figure out…
Machine Learning for Pricing and Inventory Optimization @ Macy’s - Jolene Mork Senior Data Scientist Macy's Iain Stitt Data Scientist Macy's Bhagyesh Phanse VP, Data Science Macy's Overview In this…
Top AI Conferences - Interested in learning the latest in AI this year? We’ve compiled a list of the top artificial intelligence conferences in…
Machine Learning in Production: From Research to the Customer - Ameen Kazerouni Lead Data Scientist Zappos Overview In this presentation Ameen Kazerouni, the Lead Data Scientist at Zappos, walks through…
How COVID-19 is Impacting the State of AI in Banking - On this panel, industry experts (listed above) discussed The State of AI in Banking and how COVID-19 is affecting it.…
The Autonomous Pharmacy: Applying AI and ML to Medication Management Across the Care Continuum - Ken Perez VP of Healthcare Policy Omnicell, Inc. Ken applies artificial intelligence (AI) and machine learning (ML) solutions to medication…
Leveraging AI in Cybersecurity Risk Modeling & Mitigation - Christopher Novak Director, Threat Advisory Research Verizon Wireless Introduction Originally, there was a poor understanding of why cyber breaches were…