Machine Learning in Production: From Research to the Customer


Ameen Kazerouni
Lead Data Scientist
Zappos

Overview

In this presentation Ameen Kazerouni, the Lead Data Scientist at Zappos, walks through the entire process of developing a proper machine learning process that can be scaled and deployed to solve business problems. Ameen began his own journey in the Biomedical Informatics but as he describes in this presentation, and what serves as an example of the power of machine learning, the skills learned in one industry are transferable vertically to other industries, in this case the shoe industry.

Watch Ameen Kazerouni’s full presentation here.

In the business model of Zappos, an online shoe and clothing retailer, being able to offer personalized search results for customers provides benefits in both customer experience as well as profits recognized by the company. The question and problem can easily be framed from a machine learning perspective as from a search bar with minimal input, how do you start to tell an algorithm which products to display. 

At first this may seem simple but when there are thousands of products that share names and descriptions, being able to display the proper top results can quickly become complicated. Even product names and descriptions that are designed to help search algorithms display them, will often complicate the process of proper categorization rather than help. This brings us to the first step that should be considered when trying to implement any machine learning algorithm, that is understanding and formulating the problem.

The issues in this instance include understanding the context of each search query that comes in. Context Models are produced from several different algorithms where each are searching at a customer behavior level and using Natural Language Processing techniques to derive contextual results.

(NLP is used to classify text and help determine relationships)

An additional issue included understanding the context from the Context Models as it applied to individual users in a Customer Model. This looks at the importance of different features and preferences for individual customers. But as Ameen points out, being able to develop a personalized 1 to 1 search is useless in a business model if latency is too greatly sacrificed.

The machine learning algorithms and models that they build are only useful if the information that is being processed and results being returned are completed in a time frame a customer is willing to wait for. The example, Ameen uses is that a result needs to be returned between 30 and 50 milliseconds, a very quick time.

“If you torture data enough it will tell you anything.”

This leads into a second issue that machine learning deployment faces. Machine learning algorithms are only as good as the data set that is designed to solve the problem. Oftentimes, data scientists are not good at coming up with a good feature space to begin to train a model from. They are good at squeezing accuracy percentages out of models but this does not address the real issue.

Feature engineering is a meticulous process that encompasses all of the necessary steps to formulating a proper feature space to build a model from. Documenting every feature that is being used and providing a hypothesis as to why that feature makes sense for that specific model helps solve this overall problem of creating a data set that will be able to provide an accurate prediction once trained.

Ameen and his team have been able to apply all of these necessary steps to develop a proper machine learning model. The next steps of being able to deploy it for business uses, require the proper software to be utilized which requires the proper team to be assembled. Ameen offers an interesting perspective when it comes to building the proper team. His advice, don’t try and hire the unicorns that can do it all. Instead, hire people with specialized skills that can help deploy the product into production. This avoids language dependency within a department and allows for the best tools to be used to implement a model successfully.

Ameen then begins to discuss some of the specific tools and software utilized that allow for them to implement their 1 to 1 personalized search model. The end result is they are able to expose complex algorithms over API’s that are capable of handling high throughput traffic while meeting customers facing service level agreements. By navigating these issues Zappos is able to offer personalized search results to the benefit of the customers and the company.


Tags   •   Retail

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *

Related Posts

Recent Posts

Does Healthcare AI Meet Basic Ethics Principles? - Ingrid Vasiliu-Feltes Chief Quality and Innovation Officer MEDNAX, Health Solutions Partner Over the past decade we have noticed an exponential…
“Ask Me Anything” with Zappos’s Head of AI/ML Research & Platforms, Ameen Kazerouni - Ameen Kazerouni Head of AI/ML Research & Platforms Zappos Family of Companies Ai4 recently hosted an "Ask Me Anything" session…
Top AI Conferences - Interested in learning the latest in AI this year? We’ve compiled a list of the top artificial intelligence conferences in…
Securing Personal Data for AI/ML Computing in the Cloud - Serge Vilvovsky Cybersecurity & Big Data Engineer MIT Startup Exchange Overview In this presentation, Serge Vilvovsky, a Cyber Security and…
Secure Your Code Via AI - Eliezer Kanal Technical Manager, Cyber Security Foundations, CERT Division Carnegie Mellon University Software Engineering Institute Introduction In this presentation Eliezer…
Leveraging AI in Cybersecurity Risk Modeling & Mitigation - Christopher Novak Director, Threat Advisory Research Verizon Wireless Introduction Originally, there was a poor understanding of why cyber breaches were…
Using AI to Build More Secure Software - Mark Sherman Technical Director, Cyber Security Foundations, CERT Division Carnegie Mellon University Software Engineering Institute Introduction MITRE's Common Vulnerabilities and…
Artificial Intelligence & Cybersecurity: Math Not Magic - Wayne Chung CTO FBI Introduction The field of cybersecurity has slowly progressed from an art to a science. It has…
Life Hacks for Thrilling the Customer with Your Data Science Technical Summary Products - Anne Lifton Manager of Data Science Nordstrom Overview Anne Lifton is a Manager of Data Science at Nordstrom and in…
Machine Learning for Pricing and Inventory Optimization @ Macy’s - Jolene Mork Senior Data Scientist Macy's Iain Stitt Data Scientist Macy's Bhagyesh Phanse VP, Data Science Macy's Overview In this…

Popular Posts

Leveraging AI in Cybersecurity Risk Modeling & Mitigation - Christopher Novak Director, Threat Advisory Research Verizon Wireless Introduction Originally, there was a poor understanding of why cyber breaches were…
Machine Learning for Pricing and Inventory Optimization @ Macy’s - Jolene Mork Senior Data Scientist Macy's Iain Stitt Data Scientist Macy's Bhagyesh Phanse VP, Data Science Macy's Overview In this…
Machine Learning and Artificial Intelligence in Banking - Artit "Art" Wangperawong Distinguished Engineer US Bank Introduction Every company’s AI journey is different. We’re all trying to figure out…
Convergent AI in Reducing Overdiagnosis, Overtreatment, and Misdiagnosis - Stephen Wong Chief Research Information Officer & Chair Professor Houston Methodist The current healthcare situation:  High-cost/low-quality healthcare is now a…
Figuring Out Applied ML: Building Frameworks and Teams to Operationalize ML at Scale - Dr. Nels Lindahl Director of Clinical Systems CVS Health How do you operationalize machine learning at scale? How do you…
The Autonomous Pharmacy: Applying AI and ML to Medication Management Across the Care Continuum - Ken Perez VP of Healthcare Policy Omnicell, Inc. Ken applies artificial intelligence (AI) and machine learning (ML) solutions to medication…
Unleashing the Power of AI on R&D: The Potential, The Pitfalls, The Progress - Dr. Jim Weatherall VP, Data Science & AI Astrazeneca R&D Intro to AstraZeneca R&D Here we see an end-to-end case…
Advancements at Siemens Healthineers in AI for Medical Imaging - Bimba Rao Head of Global Artificial Intelligence Engineering Siemens Healthineers Ultrasound Siemens Healthineers background  Siemens Healthineers builds healthcare products and…
What AI Will Bring to Medicine and Why Human Experts Are Here to Stay - Hakima Ibaroudene Group Leader - Research & Development Southwest Research Institute Overview Hakima Ibaroudene discusses how she and her team…
Does Healthcare AI Meet Basic Ethics Principles? - Ingrid Vasiliu-Feltes Chief Quality and Innovation Officer MEDNAX, Health Solutions Partner Over the past decade we have noticed an exponential…