Machine Learning for Pricing and Inventory Optimization @ Macy’s


Jolene Mork
Senior Data Scientist
Macy’s
Iain Stitt
Data Scientist
Macy’s
Bhagyesh Phanse
VP, Data Science
Macy’s

Overview

In this presentation a team of Data Scientists, Bhagyesh Phanse (VP), Jolen Mork (Senior DS), and Iain Stitt (DS), from Macy’s discuss the challenges and solutions reached in product forecasting in the retail market. The Macy’s team discusses two different issues they are facing determining the automation of markdown decisions for products as well as using unsupervised machine learning algorithms to cluster stores together based on seasonal sales patterns.

See the full presentation here

Bhagyesh begins this presentation speaking to how machine learning is applied across Macy’s as a company. With the retail space changing quickly, there are opportunities to apply machine learning to almost every aspect including marketing, advertising, pricing, and supply chain management. The question becomes where should the resources for machine learning be allocated? The specific problems of what is trying to be solved must first be determined followed by an evaluation of how big of an impact could potentially follow from implementing machine learning algorithms in each respective area. By having a large scope of what machine learning can possibly be applied to allows for and also requires cooperation across the board for proper implementation.

“By investing in analytical and computing power, it allows us to explore new areas of application from a collaborative perspective.”

Next, Jolen talks about when, where, and how much a product should be marked down. In the Macy’s retail market space, a unique problem is presented in trying to predict the trends for fashion products that have never been sold before and will never be sold again. Questions such as what will the demand be and where should distribution be focused from a geographical and online perspective are a few of the questions that need to be answered.

In order to try and minimize liquidation of products, Macy’s attempts to use markdown pricing to optimize sales by manipulating the prices. Being able to get business feedback is crucial to be able to update the machine learning algorithms to try and best understand how consumers react to a specific product. This kind of demand forecasting, where a comparison between sales trends and price reductions is made, is a common reinforced learning method used throughout machine learning algorithms.

Iain then goes on to speak about how different stores are grouped together using unsupervised machine learning techniques. Where Jolene speaks to how individual product demand can be predicted, Iain speaks to how trends experienced amongst several related stores can give more accurate predictions given the correct conditions. When determining the seasonal demand of a product, being able to look at seasonal rates alongside seasonal averages can be an effective way to determine the underlying rate function from observed sales points. As is typical with most machine learning techniques, the more data you have the better.

Being able to group stores together allows for more data to be used and more accurate predictions be made. Using a technique called spectral clustering, data is grouped together using a K nearest neighbor modeling technique. Stores are grouped together based on similarities of seasonal sales patterns. Distance formulas are then applied to determine the closest ‘node’ each data point within a graph below to. The number of nodes is typically an arbitrary number that is chosen that shows the total number of groups that the model wants to display.

Macy’s have invested heavily in applying machine learning algorithms and models to their everyday business. This has allowed them to optimize product placement geographically and product pricing within stores. It has allowed them to accurately update pricing based on demand forecasting. Company’s today continue to find new ways to optimize their business from a statistical perspective. It is a different way to look at common problems and remove typically biases that would normally result in different outcomes.


Tags   •   Retail

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *

margo2blog.site

I think this is one of the most vital information for me.

And i am glad reading your article. But should remark
on few general things, The site style is ideal, the articles is really great : D.
Good job, cheers

Related Posts

Recent Posts

Does Healthcare AI Meet Basic Ethics Principles? - Ingrid Vasiliu-Feltes Chief Quality and Innovation Officer MEDNAX, Health Solutions Partner Over the past decade we have noticed an exponential…
“Ask Me Anything” with Zappos’s Head of AI/ML Research & Platforms, Ameen Kazerouni - Ameen Kazerouni Head of AI/ML Research & Platforms Zappos Family of Companies Ai4 recently hosted an "Ask Me Anything" session…
Top AI Conferences - Interested in learning the latest in AI this year? We’ve compiled a list of the top artificial intelligence conferences in…
Securing Personal Data for AI/ML Computing in the Cloud - Serge Vilvovsky Cybersecurity & Big Data Engineer MIT Startup Exchange Overview In this presentation, Serge Vilvovsky, a Cyber Security and…
Secure Your Code Via AI - Eliezer Kanal Technical Manager, Cyber Security Foundations, CERT Division Carnegie Mellon University Software Engineering Institute Introduction In this presentation Eliezer…
Leveraging AI in Cybersecurity Risk Modeling & Mitigation - Christopher Novak Director, Threat Advisory Research Verizon Wireless Introduction Originally, there was a poor understanding of why cyber breaches were…
Using AI to Build More Secure Software - Mark Sherman Technical Director, Cyber Security Foundations, CERT Division Carnegie Mellon University Software Engineering Institute Introduction MITRE's Common Vulnerabilities and…
Artificial Intelligence & Cybersecurity: Math Not Magic - Wayne Chung CTO FBI Introduction The field of cybersecurity has slowly progressed from an art to a science. It has…
Life Hacks for Thrilling the Customer with Your Data Science Technical Summary Products - Anne Lifton Manager of Data Science Nordstrom Overview Anne Lifton is a Manager of Data Science at Nordstrom and in…
Machine Learning for Pricing and Inventory Optimization @ Macy’s - Jolene Mork Senior Data Scientist Macy's Iain Stitt Data Scientist Macy's Bhagyesh Phanse VP, Data Science Macy's Overview In this…

Popular Posts

Leveraging AI in Cybersecurity Risk Modeling & Mitigation - Christopher Novak Director, Threat Advisory Research Verizon Wireless Introduction Originally, there was a poor understanding of why cyber breaches were…
Machine Learning for Pricing and Inventory Optimization @ Macy’s - Jolene Mork Senior Data Scientist Macy's Iain Stitt Data Scientist Macy's Bhagyesh Phanse VP, Data Science Macy's Overview In this…
Machine Learning and Artificial Intelligence in Banking - Artit "Art" Wangperawong Distinguished Engineer US Bank Introduction Every company’s AI journey is different. We’re all trying to figure out…
Convergent AI in Reducing Overdiagnosis, Overtreatment, and Misdiagnosis - Stephen Wong Chief Research Information Officer & Chair Professor Houston Methodist The current healthcare situation:  High-cost/low-quality healthcare is now a…
Figuring Out Applied ML: Building Frameworks and Teams to Operationalize ML at Scale - Dr. Nels Lindahl Director of Clinical Systems CVS Health How do you operationalize machine learning at scale? How do you…
The Autonomous Pharmacy: Applying AI and ML to Medication Management Across the Care Continuum - Ken Perez VP of Healthcare Policy Omnicell, Inc. Ken applies artificial intelligence (AI) and machine learning (ML) solutions to medication…
Unleashing the Power of AI on R&D: The Potential, The Pitfalls, The Progress - Dr. Jim Weatherall VP, Data Science & AI Astrazeneca R&D Intro to AstraZeneca R&D Here we see an end-to-end case…
Advancements at Siemens Healthineers in AI for Medical Imaging - Bimba Rao Head of Global Artificial Intelligence Engineering Siemens Healthineers Ultrasound Siemens Healthineers background  Siemens Healthineers builds healthcare products and…
What AI Will Bring to Medicine and Why Human Experts Are Here to Stay - Hakima Ibaroudene Group Leader - Research & Development Southwest Research Institute Overview Hakima Ibaroudene discusses how she and her team…
Does Healthcare AI Meet Basic Ethics Principles? - Ingrid Vasiliu-Feltes Chief Quality and Innovation Officer MEDNAX, Health Solutions Partner Over the past decade we have noticed an exponential…