What AI Will Bring to Medicine and Why Human Experts Are Here to Stay


Hakima Ibaroudene
Group Leader – Research & Development
Southwest Research Institute

Overview

Hakima Ibaroudene discusses how she and her team at SwRI utilize the benefits of using AI in the medical field.

Applying proper diagnoses is a tedious and complicated task that doctors face every day. The time and effort required to accurately diagnose a patient can diminish the potential care that a medical staff can provide to their patients.

Where the medical field has seen drastic changes in the technology used, and with the ever-increasing capabilities of treatments that are now available, Hakima’s team wanted to find a way to give doctors more time to apply that human empathy and touch that is so critical for the best medical experience possible. 

Watch Hakima Ibaroudene’s full presentation here

Where it may take experts hours to review and make diagnoses on images, it will only take a properly trained AI algorithm minutes to come to the same conclusions. By using neural networks and deep learning, the SwRI team was able to develop flexible, accurate, and scalable algorithms that were able to mimic the predictions of their human expert counterparts with great accuracy. 

In order for a neural network to accurately predict an outcome it needs to be taught what to look for and what to ignore. It then needs to be told whether its predictions are correct or incorrect. This training process can and should be intensive. The more examples that can be provided in quantity and variety the better the algorithm will be able to predict an outcome. 

The SwRI team entered an international image classification competition where they placed first. This gave the team the confidence to use their AI expertise to build out further algorithms for different purposes. The way in which this was done was by introducing new constraints to the neural network and then comparing those results with that of what the doctors agreed with. This iterative process of altering the constraints of the neural network and providing it with feedback on its’ predictions allowed for the SwRI team to build a very accurate breast cancer biopsy predictor.

Neural networks have proven to be a great tool for classifying images and the scope of which this can be applied to far exceeds that within the medical field. However, something unique about using this technology within this field as Hakima’s team has done, is that this can quite literally be making life or death decisions. So, the question must be asked, how much can or should we trust deep learning and the neural networks that are built when it comes to the matter of an individual’s life? 

Neural networks operate by running data sets through, as referenced in the Machine Learning community, a black box. This black box represents a series of mathematical calculations and statistical computations that, to the layman, far exceed understanding. We can affect the predicted outputs by modifying the constraints of the data that feeds into the black box but the actual decision-making process cannot usually be traced from beginning to end in a way that can be easily understood.

This can be troubling, to make decisions with potentially grave consequences when the decision-making process cannot be analyzed with every step that is taken. Even experts in AI, often can only explain results to a certain level of granularity. They can point to constraints and feature importance that lead to specific outcomes but cannot walk the exact path the algorithm took to explain every result. Furthermore, it would be difficult to say what an algorithm will predict when it comes across a situation that is outside of the scope that it has been trained on. 

There needs to be a handshake between the domain and the AI expert. The AI can provide some kind of prediction and the domain expert needs to say does this make sense or not.

For these reasons, neural networks and deep learning can and should be used as tools to aid the medical community. But these algorithms and this technology will not replace the expertise of medical professionals. Human experts will always be needed to continue to train these algorithms. They will always be needed to identify the unique situations that exceed the scope of what can easily be defined.

Hakima and the team at SwRI have taken all of the correct steps of integrating experts in AI and the medical community to work together. In this way the benefits of AI can be realized and utilized effectively and efficiently. Doctors can focus on more complicated cases and can continue to help build algorithms that effectively predict diagnoses for the standard cases. AI is a powerful tool that requires training, integration, and continual feedback in order to be utilized properly by experts in both AI as well as in the fields the algorithms are being used in.


Tags   •   Healthcare

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *

Related Posts

Recent Posts

F - Test
Ai4 - Ai4 2020 is industry’s most impactful AI event.
How Machine Intelligence is Saving Lives - Artificial intelligence is improving healthcare and changing the lives of patients. In 2019, the AI in the global healthcare market…
Dilli Labs LLC - This is a test.
The Changing Roles within Cybersecurity Due to AI - During this panel, industry experts (showed above) discussed the changing roles within the cybersecurity industry due to AI. We’ve included…
How COVID-19 Is Impacting Cybersecurity - During this panel, industry experts (showed above) discussed how COVID-19 is affecting cybersecurity. We’ve included a short transcription of the…
Artificial Intelligence for Secure Payments - David SmithConsultantSmart Card Institute In recent years, the world has seen a transformation of all industries to a digital world.…
Leveraging AI in the Travel Industry at Airports - https://youtu.be/T7OpY6P0cE8 Bespoke is the developer of “Bebot”, the first AI-powered chatbot developed specifically for travel and emergency response. Bebot assists…
“Ask Me Anything” with Reid Blackman, PhD & AI Ethics Consultant - Reid Blackman, PhDAI Ethics Consultant & CEOVirtue Ai4 recently hosted an “Ask Me Anything” session with Reid Blackman, PhD on…
How Hackers are Using AI - During this panel, industry experts (showed above) discussed how hackers are using AI and the changes that they've noticed. We’ve…

Popular Posts

Does Healthcare AI Meet Basic Ethics Principles? - Ingrid Vasiliu-Feltes Chief Quality and Innovation Officer MEDNAX, Health Solutions Partner Over the past decade we have noticed an exponential…
Artificial Intelligence & Cybersecurity: Math Not Magic - Wayne Chung CTO FBI Introduction The field of cybersecurity has slowly progressed from an art to a science. It has…
AI/ML in Investment and Risk Management: Recent Applications, Use Cases, and Implementation Challenges - Arvind Rajan Managing Director - Head of Global & Macro PGIM Fixed Income Introduction Investing is a completely different ballgame…
Machine Learning for Pricing and Inventory Optimization @ Macy’s - Jolene Mork Senior Data Scientist Macy's Iain Stitt Data Scientist Macy's Bhagyesh Phanse VP, Data Science Macy's Overview In this…
Top AI Conferences - Interested in learning the latest in AI this year? We’ve compiled a list of the top artificial intelligence conferences in…
“Ask Me Anything” with Zappos’s Head of AI/ML Research & Platforms, Ameen Kazerouni - Ameen Kazerouni Head of AI/ML Research & Platforms Zappos Family of Companies Ai4 recently hosted an "Ask Me Anything" session…
Advancements at Siemens Healthineers in AI for Medical Imaging - Bimba Rao Head of Global Artificial Intelligence Engineering Siemens Healthineers Ultrasound Siemens Healthineers background  Siemens Healthineers builds healthcare products and…
Leveraging AI in Cybersecurity Risk Modeling & Mitigation - Christopher Novak Director, Threat Advisory Research Verizon Wireless Introduction Originally, there was a poor understanding of why cyber breaches were…
An Ensemble Approach to Predict Default Risk in Stress Testing - Yun Zheng VP of Innovation & Global Risk Analytics HSBC Overview This presentation discussed the importance of performing stress tests…
Machine Learning and Artificial Intelligence in Banking - Artit "Art" Wangperawong Distinguished Engineer US Bank Introduction Every company’s AI journey is different. We’re all trying to figure out…