Machine Learning for Pricing and Inventory Optimization @ Macy’s


Jolene Mork
Senior Data Scientist
Macy’s
Iain Stitt
Data Scientist
Macy’s
Bhagyesh Phanse
VP, Data Science
Macy’s

Overview

In this presentation a team of Data Scientists, Bhagyesh Phanse (VP), Jolen Mork (Senior DS), and Iain Stitt (DS), from Macy’s discuss the challenges and solutions reached in product forecasting in the retail market. The Macy’s team discusses two different issues they are facing determining the automation of markdown decisions for products as well as using unsupervised machine learning algorithms to cluster stores together based on seasonal sales patterns.

See the full presentation here

Bhagyesh begins this presentation speaking to how machine learning is applied across Macy’s as a company. With the retail space changing quickly, there are opportunities to apply machine learning to almost every aspect including marketing, advertising, pricing, and supply chain management. The question becomes where should the resources for machine learning be allocated? The specific problems of what is trying to be solved must first be determined followed by an evaluation of how big of an impact could potentially follow from implementing machine learning algorithms in each respective area. By having a large scope of what machine learning can possibly be applied to allows for and also requires cooperation across the board for proper implementation.

“By investing in analytical and computing power, it allows us to explore new areas of application from a collaborative perspective.”

Next, Jolen talks about when, where, and how much a product should be marked down. In the Macy’s retail market space, a unique problem is presented in trying to predict the trends for fashion products that have never been sold before and will never be sold again. Questions such as what will the demand be and where should distribution be focused from a geographical and online perspective are a few of the questions that need to be answered.

In order to try and minimize liquidation of products, Macy’s attempts to use markdown pricing to optimize sales by manipulating the prices. Being able to get business feedback is crucial to be able to update the machine learning algorithms to try and best understand how consumers react to a specific product. This kind of demand forecasting, where a comparison between sales trends and price reductions is made, is a common reinforced learning method used throughout machine learning algorithms.

Iain then goes on to speak about how different stores are grouped together using unsupervised machine learning techniques. Where Jolene speaks to how individual product demand can be predicted, Iain speaks to how trends experienced amongst several related stores can give more accurate predictions given the correct conditions. When determining the seasonal demand of a product, being able to look at seasonal rates alongside seasonal averages can be an effective way to determine the underlying rate function from observed sales points. As is typical with most machine learning techniques, the more data you have the better.

Being able to group stores together allows for more data to be used and more accurate predictions be made. Using a technique called spectral clustering, data is grouped together using a K nearest neighbor modeling technique. Stores are grouped together based on similarities of seasonal sales patterns. Distance formulas are then applied to determine the closest ‘node’ each data point within a graph below to. The number of nodes is typically an arbitrary number that is chosen that shows the total number of groups that the model wants to display.

Macy’s have invested heavily in applying machine learning algorithms and models to their everyday business. This has allowed them to optimize product placement geographically and product pricing within stores. It has allowed them to accurately update pricing based on demand forecasting. Company’s today continue to find new ways to optimize their business from a statistical perspective. It is a different way to look at common problems and remove typically biases that would normally result in different outcomes.


Tags   •   Retail

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *

margo2blog.site

I think this is one of the most vital information for me.

And i am glad reading your article. But should remark
on few general things, The site style is ideal, the articles is really great : D.
Good job, cheers

blog

Very nice article, exactly what I was looking for.

ปั้มไลค์

Like!! I blog quite often and I genuinely thank you for your information. The article has truly peaked my interest.

Hello

I really like and appreciate your blog article.Really looking forward to read more. Really Great.

Ricardo

Awesome content! Can I have access to the full presentation (PDF)?

Related Posts

Recent Posts

How AI is Revolutionizing Education -   Artificial intelligence has become increasingly relevant in a number of major industries. We read a lot about how it’s…
Three Amazing Ways AI is Revolutionizing Healthcare - It may not seem like it was too long ago when the idea of artificial intelligence playing a major role…
How 5G is Going to Impact AI in Automation Within Telecom - During this webinar, an industry expert discussed how an automation project comes to life from the initial business problem through…
How Automation Projects Come to Life in Telecom - During this webinar, an industry expert discussed how an automation project comes to life from the initial business problem through…
The Future of AI in Marketing - During this webinar, industry experts discussed where AI in marketing was heading in the future. We’ve included a short transcription…
How AI Has Changed Marketing - During this webinar, industry experts discussed how AI has changed the marketing industry. We’ve included a short transcription of the…
Key Takeaways From Ai4 2020 - Artificial Intelligence Creates the Demand of Innovation, Autonomy, and Personalization Amidst a Crisis There is a seemingly quiet, yet enormous…
Computer Vision Versus Other ML Projects - During this webinar, industry experts discussed computer vision projects versus other machine learning projects within an enterprise setting. We’ve included…
Computer Vision in the Enterprise - During this webinar, industry experts discussed if computer vision computer is commonplace within enterprises that have machine learning models in…
How AI is Enabling Banks to Provide a Better User Experience - During this webinar, industry experts discussed how AI is enabling banks to provide a better user experience for having both…

Popular Posts

Does Healthcare AI Meet Basic Ethics Principles? - Ingrid Vasiliu-Feltes Chief Quality and Innovation Officer MEDNAX, Health Solutions Partner Over the past decade we have noticed an exponential…
Machine Learning and Artificial Intelligence in Banking - Artit "Art" Wangperawong Distinguished Engineer US Bank Introduction Every company’s AI journey is different. We’re all trying to figure out…
Machine Learning for Pricing and Inventory Optimization @ Macy’s - Jolene Mork Senior Data Scientist Macy's Iain Stitt Data Scientist Macy's Bhagyesh Phanse VP, Data Science Macy's Overview In this…
Artificial Intelligence & Cybersecurity: Math Not Magic - Wayne Chung CTO FBI Introduction The field of cybersecurity has slowly progressed from an art to a science. It has…
AI/ML in Investment and Risk Management: Recent Applications, Use Cases, and Implementation Challenges - Arvind Rajan Managing Director - Head of Global & Macro PGIM Fixed Income Introduction Investing is a completely different ballgame…
Top AI Conferences - Interested in learning the latest in AI this year? We’ve compiled a list of the top artificial intelligence conferences in…
Machine Learning in Production: From Research to the Customer - Ameen Kazerouni Lead Data Scientist Zappos Overview In this presentation Ameen Kazerouni, the Lead Data Scientist at Zappos, walks through…
How COVID-19 is Impacting the State of AI in Banking - On this panel, industry experts (listed above) discussed The State of AI in Banking and how COVID-19 is affecting it.…
“Ask Me Anything” with Zappos’s Head of AI/ML Research & Platforms, Ameen Kazerouni - Ameen Kazerouni Head of AI/ML Research & Platforms Zappos Family of Companies Ai4 recently hosted an "Ask Me Anything" session…
The Autonomous Pharmacy: Applying AI and ML to Medication Management Across the Care Continuum - Ken Perez VP of Healthcare Policy Omnicell, Inc. Ken applies artificial intelligence (AI) and machine learning (ML) solutions to medication…